Triggering and augmentation mechanisms, granule pools, and biphasic insulin secretion.

نویسندگان

  • Troitza K Bratanova-Tochkova
  • Haiying Cheng
  • Samira Daniel
  • Subhadra Gunawardana
  • Yi-Jia Liu
  • Jennifer Mulvaney-Musa
  • Thomas Schermerhorn
  • Susanne G Straub
  • Hiroki Yajima
  • Geoffrey W G Sharp
چکیده

The insulin secretory response by pancreatic beta-cells to an acute "square wave" stimulation by glucose is characterized by a first phase that occurs promptly after exposure to glucose, followed by a decrease to a nadir, and a prolonged second phase. The first phase of release is due to the ATP-sensitive K(+) (K(ATP)) channel-dependent (triggering) pathway that increases [Ca(2+)](i) and has been thought to discharge the granules from a "readily releasable pool." It follows that the second phase entails the preparation of granules for release, perhaps including translocation and priming for fusion competency before exocytosis. The pathways responsible for the second phase include the K(ATP) channel-dependent pathway because of the need for elevated [Ca(2+)](i) and additional signals from K(ATP) channel-independent pathways. The mechanisms underlying these additional signals are unknown. Current hypotheses include increased cytosolic long-chain acyl-CoA, the pyruvate-malate shuttle, glutamate export from mitochondria, and an increased ATP/ADP ratio. In mouse islets, the beta-cell contains some 13,000 granules, of which approximately 100 are in a "readily releasable" pool. Rates of granule release are slow, e.g., one every 3 s, even at the peak of the first phase of glucose-stimulated release. As both phases of glucose-stimulated insulin secretion can be enhanced by agents such as glucagon-like peptide 1, which increases cyclic AMP levels and protein kinase A activity, or acetylcholine, which increases diacylglycerol levels and protein kinase C activity, a single "readily releasable pool" hypothesis is an inadequate explanation for insulin secretion. Multiple pools available for rapid release or rapid conversion of granules to a rapidly releasable state are required.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Signals and pools underlying biphasic insulin secretion.

Rapid and sustained stimulation of beta-cells with glucose induces biphasic insulin secretion. The two phases appear to reflect a characteristic of stimulus-secretion coupling in each beta-cell rather than heterogeneity in the time-course of the response between beta-cells or islets. There is no evidence indicating that biphasic secretion can be attributed to an intrinsically biphasic metabolic...

متن کامل

Mechanisms of biphasic insulin-granule exocytosis - roles of the cytoskeleton, small GTPases and SNARE proteins.

The release of insulin from pancreatic islets requires negative regulation to ensure low levels of insulin release under resting conditions, as well as positive regulation to facilitate robust responsiveness to conditions of elevated fuel or glucose. The first phase of release involves the plasma-membrane fusion of a small pool of granules, termed the readily releasable pool; these granules are...

متن کامل

Invited Review Hypothesis: one rate-limiting step controls the magnitude of both phases of glucose-stimulated insulin secretion

Straub, Susanne G., and Geoffrey W. G. Sharp. Hypothesis: one rate-limiting step controls the magnitude of both phases of glucose-stimulated insulin secretion. Am J Physiol Cell Physiol 287: C565–C571, 2004; 10.1152/ajpcell.00079.2004.— The biphasic secretory response of pancreatic -cells to abrupt and sustained exposure to glucose is well documented. Some of the ATP-sensitive K (KATP) channel-...

متن کامل

Hypothesis: one rate-limiting step controls the magnitude of both phases of glucose-stimulated insulin secretion.

The biphasic secretory response of pancreatic beta-cells to abrupt and sustained exposure to glucose is well documented. Some of the ATP-sensitive K(+) (K(ATP)) channel-dependent mechanisms underlying the first phase of insulin release are known; the mechanisms underlying the second phase are less well known. The hypothesis we propose is that one rate-limiting step, controlling the conversion o...

متن کامل

Modes of exocytosis and electrogenesis underlying canine biphasic insulin secretion.

Biphasic insulin secretion in response to glucose consists of a transient first phase followed by a progressive second phase. It is a well described feature of whole perfused pancreases as well as isolated pancreatic islets of Langerhans. Applying to single cell assays of exocytosis (capacitance monitoring and amperometry) to single canine Beta-cells we have examined the time courses of granule...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Diabetes

دوره 51 Suppl 1  شماره 

صفحات  -

تاریخ انتشار 2002